冬期講習 高校1年生

現在の高校1年生が受験する年である2020年度入試から、大学入試が変わります。現行のセンター試験が廃止され、それに替わって「大学入学共通テスト」が実施されます。現在、文科省の計画では、数学と国語で記述式の解答様式が設定され、英語では4技能測定の民間試験の導入が進められています。実際のところ、センター試験に替わってどのような試験になるのかはまだ未定ですが、確実に言えることが一つあります。

それは、どのような試験になるにしても、「高校1・2年生で学習する基礎が重要」ということです。数学は記述式の解答様式が検討されていますが、記述式の答案を書くためには、計算方法が分かっていないと記述できません。英語も、単語力や文法力が不足していては、正確な英文は聞き取れませんし、文章で表現することもできません。

つまり、2020年の大学入試改革に備え、今のうちから基礎を身に付けよう、ということです。 

個別指導

ライプラスでは以下のような様々な授業を計画しています。

 

・<復習>中学英文法復習講座

・<復習>高校英文法基礎講座

・<学校フォロー>英文法・教科書内容指導授業

・<復習>中学数学復習講座

・<復習>数学 復習講座

・<復習>数学A 復習講座

・<学校フォロー>数学ⅠA 教科書内容指導授業

 

高校英文法の習得に向けて、土台を固めるために中学英文法を徹底的に復習します。実は、中学で習う文法単元と、高校で習う文法単元はかなり多く共通しています。ということは、中学英文法の理解が不十分だと、高校英文法の理解度は低くなってしまいます。文系・理系問わず必要な科目である英語。冬の間に文法の土台を固めましょう。

 

 

<講座回数>全13回

<テキスト>トライ式 逆転合格!英語

<カリキュラム>

第1回
文型
第2回
be動詞、一般動詞
第3回
否定文・疑問文
第4回
進行形
第5回
疑問詞
第6回
助動詞
第7回
不定詞
第8回
動名詞
第9回
比較
第10回
受動態
第11回
現在完了
第12回
分詞
第13回
関係代名詞

1年生の冬までに学習した文法事項を総復習します。基本的な品詞、文構造から始め、英文法の基礎を身に付けます。

 

<講座回数>全10回

<テキスト>高校新演習ベーシック 英文法

<カリキュラム> 

第1回
品詞
第2回
文構造
第3回
文構造
第4回
時制
第5回
時制
第6回
助動詞
第7回
受動態
第8回
不定詞
第9回
不定詞
第10回
動名詞

学校の授業進度に合わせて授業を進め、主に英語表現の文法事項を指導します。多くの高校では、教科書本文に合わせた文法事項を指導するため、その文法単元における問題演習が少なくなってしまいがちです。トライプラスの塾用教材と学校の教材を合わせて問題演習を行い、文法の基礎から身に付けます。

 

<講座回数>学校の授業内容に合わせて6回程度

<テキスト>学校の教材、高校新演習ベーシック英文法

 

 

高校数学は、中学で学習する内容が元になっているのは言うまでもありませんが、とりわけ大事なのは計算力です。実は、高校数学は英語と異なり、高校で新しく学習する内容がほとんどです。たとえ、中学内容で不得意な単元があっても、高校で取り戻すこともできます。実際、高校数学では「速度」や「濃度」や「割合」といった、中学数学のお決まりの文章問題はほとんど出てきません。では、高校数学の何がそんなに難しいのか。一言で言うと、「計算」です。

中学数学では、解の公式を使って解いた2次方程式も、高校では「たすき掛け」を使って因数分解で解きます。中学より一段階上の計算力が求められているわけです。そのことに気づかず、問題演習が少ないと、高校の難しい計算について行けず、結果として授業が分からなくなってしまうのです。

トライプラス鎌取駅前校では、高校数学に役立つ計算に重きをおいて、中学内容の復習を指導します。方程式を中心に計算問題を指導し、計算力を鍛えます。

 

<講座回数>全11回

<テキスト>トライ式 逆転合格!数学、iワーク数学

<カリキュラム>

第1回
式の計算
第2回
1次方程式
第3回
1次関数
第4回
1次関数
第5回
平方根
第6回
展開
第7回
因数分解
第8回
2次方程式
第9回
2次関数
第10回
三平方の定理
第11回
三平方の定理

高校数学の中での最重要単元は、数の2次関数です。なぜならグラフや方程式等、応用範囲が非常に広く、後にやる三角関数や指数関数、対数関数でも出題される内容だからです。トライプラス鎌取駅前校では、数の内容をよりよく理解するため、その最重要単元を復習します。

 

<講座回数>全5回

<テキスト>高校新演習スタンダード 数学

<カリキュラム>

第1回
式の計算、因数分解
第2回
2次関数のグラフ
第3回
2次関数の最大・最小
第4回
2次不等式
第5回
2次関数のグラフの位置

数学Aの中では、場合の数、確率が大きな単元となります。中学までの確率では、樹形図を書くだけで答えが出せましたが、高校数学では問題が複雑なため、樹形図では答えが出せません。高校数学では、順列(P)と組み合わせ(C)を使って解きますよね?

場合の数と確率の単元を苦手とする高校生は非常に多いのですが、そのような生徒は、この順列と組み合わせの使い方の練習が不足しているケースがほとんどです。「この問題はこのように解く」といったパターン暗記が不十分であるケースも多いですね。トライプラス鎌取駅前校では、計算練習用のテキストを使い、問題演習に力を入れて指導します。

 

<講座回数>全6回

<テキスト>高校新演習スタンダード 数学A 、精選トレーニング 数学A

<カリキュラム> 

第1回
場合の数
第2回
順列
第3回
組み合わせ
第4回
確率とその基本性質(1)
第5回
確率とその基本性質(2)
第6回
独立な試行と条件付き確率

学校の授業進度に合わせて授業を進め、主に公式や定理の使い方を指導します。多くの高校では、公式や定理の証明に時間を取られ、その使い方や問題演習が少なくなってしまいがちです。トライプラスの塾用教材と学校の教材を合わせて問題演習を行い、計算力を身に付けます。

 

<講座回数>学校の授業内容に合わせて6回程度

<テキスト>学校の教材、高校新演習ベーシックB